Safer Speeds: Considerations for Speed Limits for all Street-users

(Image: Photo by David Lofink)

Presented by:
Dr. Offer Grembek
Berkeley SafeTREC

Presented at:
MTC Tech Transfer Seminar:
Operating Complete Streets
February 3, 2020

Goal of the transportation system?

Provide mobility.

Goal of the transportation system?

Provide mobility.

Provide efficient, cost-effective, equitable, sustainable, ..., and safe mobility.

So, is our transportation system safe?

So, is our transportation system safe?

FIGURE 1-3: Fatality Rate and Vehicle Miles Traveled, 1966-2013 (Source: NHTSA FARS)

The fatality rate has demonstrated a downward trend for decades.

We're on the right track towards safety.

So, is our transportation system safe?

No. It is not safe.

Fatalities and Fatality Rate per 100 Million VMT, by Year, 1975-2017

[^0]
2017 Fatalities:

California:
3,602
USA:
37,133
Globally:
Over 1,300,000

So，is our transportation system safe？

No．It is not safe．

	10 Leading Causes of Injury Deaths by Age Group Highlighting Unintentional Injury Deaths，United States－ 2017										
Rant	${ }^{1}$	14	5.9	${ }^{10.14}$					${ }_{55.64}$	${ }^{65+}$	Total
1	5	为	＂mbic	＂matic	5	fan	\％mim	एome	510N	3ftom	（mas
2	Humbic	＂matic	amber		3	5	5imem	＂mamic	＂imem	$4{ }^{4}$	为
3	50	，hmomidem	为		Hemide	come					\％
4		asmem	$\substack{\text { mamide } \\ \text { nimic }}$	namide					2	5	
5	Unstamion	5mbem	\％misim	510		Sill	coin			5amme	

So，is our transportation system safe？

No．It is not safe．

10 Leading Causes of Injury Deaths by Age Group Highlighting Unintentional Injury Deaths，United States－ 2017												First，or Second；
Rank	${ }^{<1}$	1.4	5.9	10.14					${ }_{5564}$	${ }^{65+}$	Total	
1			4，	为	＂1090							
2		5	T			＂mmic	50，	＂${ }^{5}$	＂mimic	＂mimic	为	
3	500				边					\％ 5		Age＞1yr
4				Unemide	5						为	
5	come				$\mathrm{sum}_{\text {simim }}^{\text {sim}}$	com	com					
	Nome	enter	Salses	Scontal								

So, is our transportation system safe?

a system in which people cannot die despite human error.

safe

system
Job, and Sakashita. 2016a

So, is our transportation system dangerous?

So, is our transportation system dangerous?

dangerous system

a system in which people can die with no human error (e.g., mine field, avalanche area).

Our system is not safe and also not dangerous

Our system is not safe and also not dangerous

FIGURE 1-3: Fatality Rate and Vehicle Miles Traveled, 1966-2013 (Source: NHTSA FARS)

unsafe

 systema system in which people can die through human error

Job, and Sakashita. 2016a
Berkeley SafeTREC

Policy innovation to move the needle

Berkeley SafeTREC

Policy innovation to move the needle

Vision Zero \& Safe System challenge our ability to reach zero without a major change

dangerous system unsafe system safe system

Principles of Safe System

Mooren et al., 2011

Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

Berkeley SafeTREC

Inequitable safety impact

Pedestrians suffer 36.95 times more injuries than they inflict.
Grembek, 2012

Injuries in California (2005-2009)		Mode j Inflicted an injury								Total
		Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object	
	Foot	31	488	327	32,455	631	5,736	531	3	40,202
	Bicycle	195	1,551	213	28,657	320	4,833	397	1,655	37,821
	PTW	159	106	4,847	21,036	118	4,199	647	8,864	39,976
	Car	607	331	2,814	221,444	2,655	76,543	18,323	110,105	432,822
	Transit	28	15	10	2,829	578	596	347	474	4,877
	SUV	66	46	332	43,543	330	23,403	3,262	19,213	90,195
	Truck	2	5	18	2,305	58	578	1,638	1,663	6,267
	Object	0	0	0	0	0	0	0	0	0
	Total	1,088	2,542	8,561	352,269	4,690	115,888	25,145	141,977	652,160
RV for Individua modes		Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object	
		36.95	14.88	4.67	1.23	1.04	0.78	0.25	0.00	

Speed management as a critical regulator

- Vehicle speed is an important regulating factor for safe road traffic since it is subject to road-user behavior and misjudgment
- Kinetic energy is proportional to the square of its speed, and established the level of protection needed to design of a safe transport system

Types of Speed Limits in CA/US

- Basic Speed Law (CVC 22350) states that a driver may never driver faster than is reasonable or prudent for current conditions.
- Two types of speed limits
- Statutory speed limit
- Posted speed limit

Statutory and Posted Speed Limits

- Statutory speed limit (maximum speed limit)
- Set by the State Legislature and enforceable even if speed limit sign is not posted
- Posted speed limit (regulatory speed)
- Set by a local jurisdiction (city or county)
- Must have an up-to-date Engineering and Traffic Survey
- Takes priority over the established statutory speed limit

Posted Speed Limits in the US

- Speed limits are established by computing the 85th percentile speed during free-flow travel.
- This approach was attributed to a 1964 USDOT report labeled "Accidents on Main Rural Highways Related to Speed". The report's findings have not been successfully replicated since.
- Another stated rationale is that speed limits below the 85th percentile discourage drivers' compliance with the posted speed limit.

Research Synthesis for AB 2363 Zero Traffic Fatalities Task Force

- Evidence about speed and safety (why is this important?)
- History of the 85th percentile (where does the current practice came from?)
- Limitations of the current speed limit setting practices (why we need to reconsider it?)
- What are promising alternatives to set speed limits (how can we do it better?)

Research Synthesis for
 AB 2363 Zero Traffic Fatalities Task Force

Evidence about speed and safety (why is this important?)

- There is consistent evidence that as speed increases the probably of fatality given a crash increases too. Supported by the laws of physics.
- There is also strong statistical relationship between average operating speed and crashes. This does not mean that traveling 50 mph on an urban arterial is safer than traveling 70 mph on a highway, but these findings establish that, all else equal, going faster is less safe.
- In light of this, reducing speed limits will most likely create safety benefits.

Research Synthesis for AB 2363 Zero Traffic Fatalities Task Force

History of the 85th percentile (where does the current practice came from?)

- The current practice of setting speed limits to the 85th percentile can be traced back to the late 1930s.
- This was based on the assumption that 85 percent of the drivers are sufficiently careful not to operate their cars too fast for conditions. It was also noted that it must, however, be adjusted in the light of crashes.
- There is no empirical study that demonstrates that the $85^{\text {th }}$ percentile speed optimizes safety.

Research Synthesis for
 AB 2363 Zero Traffic Fatalities Task Force

Limitations of the current speed limit setting practices (why we need to reconsider it?)

- Drivers have a tendency to underestimate speed. This demonstrates that drivers have limited capability to self-regulate a safe speed, especially at lower speed areas. It is therefore undesirable to rely on operating speed to establish safe speed. Moreover, over time, the practice of the 85th percentile can create an upward drift in operating speeds
- e.g., assume that collectively drivers elect speeds such that about half of them drive faster than the speed limit. This behavior, if coupled with a periodical application of the 85th percentile rule, would cause an upward drift in speeds.

Evolution of Speed

FIGURE 1 Median and 85th percentile speeds on rural Interstates in Montana. (Source: R. Retting of the Insurance Institute for Highway Safety.)

Practitioner Survey

National Committee on Uniform Traffic Control Devices

- Spring 2018
- 13 questions
- Distributed to numerous transportation professionals
- Number of respondents: 740
- Over 80\% use MUTCD regularly
- Average experience: 20 years

Factors most utilized in setting speed Limits?

Utilization criteria (top 10 with always utilized)	Overall Rank	10 years or less (rank)	$11-20$ years (rank)	Over 20 years (rank)
Speed of vehicles	$\mathbf{1}$	4	1	2
Crash history	$\mathbf{2}$	2	3	3
Context - location	$\mathbf{3}$	1	2	5
Statutory requirements	$\mathbf{4}$	9	4	1
Geometrics (curve)	$\mathbf{5}$	6	5	4
Facility classification type	$\mathbf{6}$	7	10	7
Context - land use	$\mathbf{7}$	3	6	10
Geometrics (sight distance)	$\mathbf{8}$	--	8	6
Geometrics (lane width, CS)	$\mathbf{9}$	10	9	9
\% vehicles above PSL / speed distribution curve / \% veh in pace	$\mathbf{1 0}$	--	7	

Factors most utilized in setting speed Limits?

Utilization criteria (top 10 with always utilized)	Overall Rank	10 years or less (rank)	$11-20$ years (rank)	Over 20 years (rank)
Speed of vehicles	$\mathbf{1}$	4	1	2
Crash history	$\mathbf{2}$	2	3	3
Context - location	$\mathbf{3}$	1	2	5
Statutory requirements	$\mathbf{4}$	9	4	1
Geometrics (curve)	$\mathbf{5}$	6	5	4
Facility classification type	$\mathbf{6}$	7	10	7
Context - land use	$\mathbf{7}$	3	6	10
Geometrics (sight distance)	$\mathbf{8}$	--	8	6
Geometrics (lane width, CS)	$\mathbf{9}$	10	9	9
\% vehicles above PSL / speed distribution curve / \% veh in pace	$\mathbf{1 0}$	--	7	

Research Synthesis for AB 2363 Zero Traffic Fatalities Task Force

What are promising alternatives to set speed limits (how can we do it

 better?)- Other countries with desirable safety performance set speed limits based on the combination of the built environment including roadway features and geometry, the vehicle fleet, and the potential road users.
- Moreover, some jurisdictions, including domestic ones, are incorporating speed limit setting laws that give cities more flexibility to implement slower speed zones in urban areas.

Fatality risk for collision speed, by crash type

Source: Wramborg, P. 2005." A New Approach to a Safe and
Sustainable Road Structure and Street Design for Urban Areas. Paper presented at 13th International Conference on Road Safety on Four Continents, Warsaw, Poland, October 5-7.

Berkeley SafeTREC

Speed limits for a safe system in Sweden

Source: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI.
Original Values have been converted from kph to mph and rounded.

Rural speed limits for safe system, Sweden

- $45 \mathrm{mph}(70 \mathrm{~km} / \mathrm{h})$: default limit on rural roads
- $50 \mathrm{mph}(80-90 \mathrm{~km} / \mathrm{h}):$: 2 -lane roads (milled rumble strips in middle of road)
- $65 \mathrm{mph}(100 \mathrm{~km} / \mathrm{h}): 2+1$ roads with median barrier
- $70 \mathrm{mph}(110 \mathrm{~km} / \mathrm{h})$: motorways
- $75 \mathrm{mph}(120 \mathrm{~km} / \mathrm{h})$: motorways with high standard and low traffic flow

Year	Increased speed limit $(\mathbf{k m})$	Decreased speed limit $(\mathbf{k m})$
2008	1000	2500
2009	1600	15000

Source: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI Original Values have been converted from kph to
mph and rounded.

75

Berkeley SafeTREC

Urban speed limits for a safe system, Sweden

Guidelines consider:

- City's character
- Accessibility
- Security
- Traffic Safety
- Health and Environment

Safety Level	Conflicts VRU-car	Conflicts car-car (intersections)	Conflicts car- obstacle	Conflicts car-car (oncoming traffic)
High	$\leq 20 \mathrm{mph}$	$\leq 30 \mathrm{mph}$	$\leq 40 \mathrm{mph}$	45 mph

Thank you!
Offer Grembek, grembek@berkeley.edu Katherine Chen, kchen@berkeley.edu

[^0]: Sources: FARS 1975-2016 Final File, 2017 ARF; Vehicle Miles Traveled (VMT): FHWA.

